skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marriage, Tobias T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
    Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter 50~µm, 175~µm pitch) positioned 0.88~mm from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($$f_\mathrm{res}$$) profile is consistent with the target, $139$~Hz$$<154$$~Hz in the optically active region (diameter smaller than 150~mm), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $<15''$, corresponding to an increase in beam width due to beam smearing of < $0.6''$, %a beam smearing amplitude of $<0.6''$, negligible compared to the beam's full-width half-maximum of $36'$. The median and 16/84th percentile of the wire--mirror separation residual was $$0.048^{+0.013}_{-0.014}$$~mm in the optically active region, achieving a modulation efficiency $$\epsilon=96.2_{+0.5}^{-0.4}\%$$ with an estimated bandpass of 34~GHz. The angular velocity of the RHWP was maintained to an accuracy of within 0.005\% at the nominal rotation frequency (2.5~Hz). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018. 
    more » « less